Ch. 7 Specification: Functional Forms

- **Linear Form**: linear in variables Y and X

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_k X_k + \epsilon.$$

1) The slope of X on Y is a constant, i.e.,

$$\frac{\partial Y}{\partial X_j} = \frac{\Delta Y}{\Delta X_j} = \beta_j.$$

2) The elasticity of Y with respect to X (the percentage change of Y caused by a 1 percent increase in X) is not constant,

$$\frac{\partial \ln Y}{\partial \ln X_j} = \frac{(\Delta Y/Y)}{(\Delta X_j/X_j)} = \beta_j \frac{X_j}{Y}.$$

--- the linear functional form of Y and X should be used if the slope of the relationship between Y and X is expected to be constant.

- **Double-Log Form**:

$$\ln Y = \beta_0 + \beta_1 \ln X_1 + \cdots + \beta_k \ln X_k + \epsilon.$$

1) The elasticities of the model are constant, but the slopes are not.

2) It is applicable only if there are no negative or zero observations in the data Y and X.

3) The relation between Y and Xs is

$$Y = e^{\beta_0} X_1^{\beta_1} \cdots X_k^{\beta_k} e^\epsilon.$$

(Figure 7.2 here)

- **Semilog Form**: Some variables are in logs and some are not

1) $Y = \beta_0 + \beta_1 \ln X_1 + \beta_2 X_2 + \epsilon$

 — The relationship between X_1 and Y is hypothesized to have the ‘increasing at a decreasing rate’ form (if $\beta_1 > 0$).

 a) Economic example: Engel Curves - relations between consumption expenditure and income.

2) $\ln Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon.$

 — The dependent variable Y is adjusted in percentage terms to a unit change in X.

 a) Economic example: salary of an individual worker Y may be raised in percentage term with X being his/her experience.

- **Polynomial Form**: some variables are raised to powers (other than one)

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon.$$
1) The slope of X on Y changes as X changes, i.e.,
\[\frac{dY}{dX} = \frac{\Delta Y}{\Delta X} = \beta_1 + 2\beta_2 X. \]

2) Economic example: (convex) cost function, Y being the average cost of production and X being the level of output; $\beta_1 < 0$ but $\beta_2 > 0$.

(Figure 7.4 here)

3) Economic example: (concave) earning profile, Y being earning and X being age; $\beta_1 > 0$ but $\beta_2 < 0$.

- **Inverse Form**: Y is a function of the reciprocal (inverse) of X, i.e.,
\[Y = \beta_0 + \beta_1 \frac{1}{X} + \epsilon. \]

→ the impact of X is expected to approach zero as X increases to infinity.

(Figure 7.5 here)

1) \[\frac{dY}{dX} = \frac{\Delta Y}{\Delta X} = -\frac{\beta_1}{X^2}. \]

2) Economic example: Phillips curve – a nonlinear relationship between the rate of unemployment and the percentage change in wages
\[W = \beta_0 + \beta_1 \frac{1}{U} + \epsilon \]

where W is the percentage change in wages and U is the rate of unemployment.

- Using Dummy Variables: a dummy variable takes on the values of 0 and 1.

1) **Intercept Dummy**
\[Y = \beta_0 + \beta_1 X + \beta_2 D + \epsilon, \]
where D is a dummy variable.

→ the intercept dummy (here, D) changes the intercept but the slopes (of X) remain constant.

(Figure 7.7 here)

2) **Slope Dummy Variables**
\[Y = \beta_0 + \beta_1 X + \beta_2 D + \beta_3 X D + \epsilon. \]

a) The slope dummy variable D allows the slope of X on Y to be different depending on whether the condition specified by the dummy variable D is met.

b) There really are two equations:
\[Y = \beta_0 + \beta_1 X + \epsilon, \quad \text{when } D = 0 \]
\[Y = (\beta_0 + \beta_2) + (\beta_1 + \beta_3) X + \epsilon \quad \text{when } D = 1. \]

(Figure 7.8 here)
c) The slope of Y with respect to X changes if D changes:

When $D = 0$, \[\frac{dY}{dX} = \frac{\Delta Y}{\Delta X} = \beta_1 \]

When $D = 1$, \[\frac{dY}{dX} = \frac{\Delta Y}{\Delta X} = (\beta_1 + \beta_3). \]

d) Economic example: (structural change) consumption function estimated over a time period that includes a major war.

e) Examples in labor economics: use as a special kind of interaction terms, e.g., interaction of gender and working experience in earnings.